
Intermediate UNIX Command Line
Mississippi Center for Supercomputing Research
Ben Pharr bnpharr@olemiss.edu
	
Connecting to a remote server
Most	UNIX	and	Linux	systems	that	are	operating	as	servers	run	an	SSH	daemon.	Users	with	
valid	accounts	on	that	system	can	then	use	an	SSH	client	to	connect	to	the	server:	

• PuTTY:	http://www.chiark.greenend.org.uk/~sgtatham/putty/	
• Mac	OS	X	and	most	Linux	distributions	come	with	a	command-line	SSH	client	(ssh)	

pre-installed.	
	
Today	we’ll	be	using	the	PuTTY	to	connect	to	hpcwoods,	MCSR’s	gateway	server.	

1) Start	by	opening	the	PuTTY	application.	
2) In	the	“Host	Name”	field,	enter	“hpcwoods.olemiss.edu”.	
3) Click	“Open”.	
4) Depending	on	whether	or	not	your	computer	has	ever	connected	to	hpcwoods,	you	

may	get	a	dialog	asking	if	you	“want	to	save	the	new	host	key	to	the	local	database?”	
Click	“Yes”.	This	is	so	the	client	can	confirm	the	identity	of	the	server	on	subsequent	
connections.	

5) If	you	are	an	MCSR	user,	you	may	use	your	username	in	the	“User	Name”	field.	
Otherwise,	use	the	temporary	username	given	to	you	by	the	instructor.	

6) Enter	your	password,	or	the	one	given	to	you	by	the	instructor,	in	the	“Password”	
field.	

7) If	successful,	you	should	see	a	command	prompt.	Something	like:	
username@hpcwoods:~>	

	
Mac	and	Linux	users	can	open	a	Terminal	window	and	run:	
ssh username@hpcwoods.olemiss.edu	

Environmental Variables
Environmental	variables	allow	a	user	to	customize	their	command	line	and	its	operation	to	
their	liking.	All	the	commands	in	this	workshop	assume	that	we’re	using	the	bash	shell,	but	
most	of	them	would	work	in	other	shells,	too.	This	can	be	confirmed	by	typing:	

echo $SHELL Displays	the	contents	of	the	SHELL	environmental	
variable.	

	
General	commands	

env Displays	all	environmental	variables.	
echo $USER Displays	the	current	username.	
echo $HOME Displays	the	current	user’s	home	directory.	
export MYVAR=”Testing…” Set	a	new	variable.	
echo $MYVAR Display	the	contents	of	the	variable.	

	
	 	

	 	 2	 	

Customize	your	shell	prompt	
echo $PS1 See	the	current	prompt	settings.	
export PS1=”\u@\h:\w$ “ Slight	modification	to	the	prompt.	
export PS1="\d \t\n\u@\h:\w(\!)$ " A	deluxe	prompt.	
man bash Search	for	“PROMPTING”	for	all	

options.	
It	is	also	possible	to	set	certain	parts	of	the	prompt	to	particular	colors.	See	Google	for	
details.	
	
Another	environmental	variable	that	needs	to	be	changed	a	lot	is	the	PATH.	The	PATH	
variable	determines	where	the	shell	looks	for	commands.	For	instance,	when	you	type	ls,	
the	shell	looks	through	each	directory	in	PATH	until	it	finds	an	executable	named	ls.	

echo $PATH Displays	the	current	PATH.	
which ls Find	out	which	executable	is	being	used	when	

you	type	ls.	
export PATH=/opt/bin:$PATH Prepend	a	new	directory	to	the	PATH.	

	
Shell startup files
The	changes	that	we	have	been	making	to	environmental	variables	are	not	permanent.	
They	go	away	when	we	logout.	To	make	them	permanent,	we	need	to	add	them	to	the	shell	
startup	files.	
	
When	a	user	logs	in,	their	shell	first	reads	/etc/profile,	allowing	system-wide	settings	to	be	
set.	Then	it	reads	~/.profile	or	~/.bash_profile	for	user	settings.	Interactive	non-login	
shells	(su	or	xterm,	for	example)	also	read	~/.bashrc.	
	
Changes	can	be	made	to	either	file.	However,	it	is	not	uncommon	for	the	~/.profile	to	
source,	or	import,	the	~/.bashrc	file,	meaning	it	might	be	preferable	to	modify	the	
~/.bashrc	file,	so	the	changes	would	apply	in	either	case.	
	
These	files	(like	all	configuration	files	on	UNIX	systems)	are	plain	text,	meaning	they	can	be	
modified	with	your	favorite	text	editor,	like	nano,	vi,	or	emacs.	
	
Accessing files in other directories
Using	files	in	the	current	directory	is	pretty	simple,	but	being	able	to	reference	files	in	other	
directories	can	help	you	be	a	more	efficient	UNIX	user.	You	can	do	this	by	using	absolute	
and	relative	references.	This	can	be	demonstrated	by	copying	files	from	one	directory	to	
another.	First,	let’s	create	a	directory	and	a	file	to	play	with:	
	
 mkdir dir1 Creates	a	new	directory
 touch dir1/testfile Creates	a	new,	empty	file	inside	the	directory
	
The	reference	dir1/testfile	is	a	very	simple	example	of	a	relative	reference.	dir1	is	
relative	to	the	current	directory.	
	

	 	 3	 	

Now	we	want	to	create	another	directory	and	copy	testfile	to	it.	We	could	make	a	copy	of	
the	entire	directory,	but	that	would	defeat	the	purpose	of	the	exercise.	
	 mkdir dir2	 	 	 Create	another	directory	
	 cp dir1/testfile dir2	 Copy	the	file	in	dir1	to	dir2	
	
This	is	just	one	way	to	make	a	copy	of	a	file	in	another	directory.	There	are	several	others,	
and	the	“best”	method	depends	on	the	circumstances.	
	
You	can	also	use	an	absolute	reference.	In	this	example,	we’ll	use	the	tilde	to	represent	your	
home	directory.	The	system	knows	where	your	home	directory	is	on	the	filesystem.	
	 cp ~/dir1/testfile dir2
	
Another	way	to	use	relative	references	is	to	use	“.”	to	refer	to	the	current	directory	and	“..”	
to	refer	to	the	parent	directory	of	the	current	directory.	For	instance,	you	can	copy	the	file	
like	this:	
	 cd dir2 Make	dir2	the	current	directory	
	 cp ../dir1/testfile .
	
These	“files,”	as	well	as	other	“hidden”	“dot”	files	can	be	seen	by	running	
	 ls	–a	
The	–a	switch	tells	ls	to	show	all	files.	
	
A	common	use	of	the	..	file	is	to	go	“up”	or	“back”	one	directory:	
 cd ..
	
File and directory permissions
A	file’s	permissions	determine	which	users	can	do	what	to	a	particular	file.	To	see	the	
permissions	for	all	files	in	a	directory,	type:	
 ls –la
The	output	for	each	file	looks	something	like	this:	
-rw-r--r-- 1 bnp users 1028 2011-10-14 15:14 .profile
	
The	first	column	contains	the	permissions.	The	first	dash	tell	us	this	is	a	regular	file.	If	it	
were	a	directory,	it	would	have	a	d	instead.	The	next	three	symbols	(rw-)	represent	the	
permissions	for	the	owner	of	the	file,	which	is	bnp	in	this	case.	
	
The	next	three	symbols	(r--)	represent	the	permissions	for	the	group	that	owns	this	file,	
which	is	users	in	this	case.	The	final	three	symbols	in	the	permissions	column	(r--)	
represent	the	permission	for	“world,”	or	everyone	else	on	the	system	that	isn’t	the	owner	of	
the	file	or	a	member	of	the	group	that	owns	the	file.	
	
In	each	case,	the	three	symbols	tell	us	whether	or	not	the	file	can	be	read	(r),	written	to	(w),	
or	executed	(x)	by	that	user	or	group	of	users.	If	the	letter	appears,	then	that	permission	in	
enabled,	if	not,	a	dash	appears	in	its	place.	In	the	above	example,	the	owner	of	the	file	can	
read	and	write	the	file,	but	the	group	and	world	can	only	read	it.	

	 	 4	 	

	
Sometimes	you	might	also	hear	someone	say	that	a	particular	“bit	is	set.”	For	instance,	in	
the	above	example,	it	could	be	said	that	“the	write	bit	is	set	for	the	user.”	This	is	because	
each	permission	is	represented	by	a	binary	bit	that	can	be	turned	on	or	off.	
	
We	can	set	the	permissions	of	a	file	using	the	chmod	command.	It	can	be	done	symbolically	
or	numerically.	Some	examples:	

chmod g+w .profile Give	the	group	write	privileges.	
chmod g-w .profile Revoke	the	group’s	write	privileges.	
chmod 640 .profile Give	owner	read	and	write	privileges,	group	read	

privileges,	and	no	privileges	to	world.	
	
Text editors
If	you	bothered	to	come	to	this	workshop,	chances	are	you	spend,	or	plan	to	spend,	a	lot	of	
time	logged	in	to	a	UNIX	system.	If	that’s	the	case,	you’ll	want	to	learn	to	use	a	text	editor	
other	than	nano.	
	
vi	is	the	classic	UNIX	text	editor.	It	will	be	on	every	UNIX	system	you	ever	login	to,	unlike	
nano	and	emacs.	However,	its	commands	are	a	little	cryptic	and	the	learning	curve	is	
fairly	steep.	
	
Emacs	is	another	common	UNIX	text	editor.	Its	learning	curve	isn’t	quite	as	steep	as	vi’s,	
but	it’s	not	exactly	user-friendly	either.	
	
I	personally	use	emacs,	though	I	can	use	vi	when	the	situation	calls	for	it.	If	I	had	to	pick	
just	one	for	you	to	learn,	I’d	probably	have	to	pick	vi,	because	it’s	everywhere.	Either	vi	or	
emacs	will	give	you	more	text	editing	power	than	nano.	The	time	you	spend	learning	
either	one	will	be	well	worth	it.	
	
Scripts
Often	you	will	need	to	run	a	sequence	of	commands	(or	a	single	long	command)	more	than	
once.	You	can	create	a	script	that	contains	these	commands.	
	
Let’s	say	we	want	to	see	the	largest	files	in	the	current	directory.	We	can	do	this	with	the	
command:	
	 ls -sSh | head
but	we	don’t	want	to	have	to	remember	that	and	type	it	in	each	time.	We	can	create	a	script	
to	make	it	easier	on	ourselves.	
	
Open	a	file	named	big_files	using	your	favorite	text	editor.	Add	these	two	lines:	
#!/bin/bash
ls -sSh | head
then	save	and	exit.	Before	we	can	execute	the	script,	we	need	to	set	the	file’s	execute	bits.	
Running:	
 chmod +x big_files

	 	 5	 	

will	give	everyone	on	the	system	permission	to	execute	our	script.	This	is	fine	in	this	case.	
	
To	execute	the	script,	type:	
 ./big_files
	
If	we	want	to	be	able	to	execute	this	script	from	any	directory	without	typing	the	whole	
path,	we	have	to	put	it	in	our	PATH	environmental	variable.	It’s	traditional	for	each	user	to	
have	a	bin	directory	in	their	home	directory	where	they	can	put	programs	and	scripts	they	
want	to	execute.	
	
To	create	this	directory,	copy	the	script	to	your	bin	directory,	and	add	the	bin	directory	to	
your	PATH,	follow	these	steps	(from	your	home	directory):	

1) mkdir bin
2) cp big_files bin
3) export PATH=~/bin:$PATH

You	can	now	execute	the	big_files	script	(from	anywhere	on	the	system)	by	typing	
big_files

	
However,	if	you	want	this	change	to	your	PATH	to	be	permanent,	you’ll	need	to	put	the	
command	to	change	it	in	one	of	your	shell	startup	files.	
	
Process management
When	a	program	is	executed,	a	process	is	created.	Each	process	is	assigned	a	process	ID	
(PID).	

The	top	utility	can	be	used	to	see	the	system’s	processes,	sorted	by	CPU	utilization,	as	well	
as	the	general	status	of	the	system.	At	the	top,	it	shows	system	uptime,	number	of	users	
logged	in,	load	average	(a	measure	of	how	busy	the	system	is),	the	number	of	processes	in	
various	states,	and	system	memory	usage.	
	
Below	that,	processes	are	shown,	one	per	row.	For	each	process,	it	lists	the	PID,	owner	of	
the	process,	priority,	memory	usage	information,	CPU	and	memory	utilization,	time	the	
process	has	been	running,	and	the	name	of	the	program.	Pressing	?	allows	you	to	change	
how	processes	are	shown.	
	
To	see	a	list	of	all	processes,	type:	
	 ps –ef
The	list	can	be	filtered	using	the	grep	command.	For	instance,	to	get	a	list	of	all	ssh	
processes,	type:	
	 ps –ef | grep ssh
To	get	a	list	of	all	processes	not	owned	by	root	(the	administrative	user),	use	grep’s	–v	
(invert)	option:	
	 ps –ef | grep –v root

Under	normal	conditions,	processes	do	their	job	and	go	away,	not	needing	any	attention	
from	us.	But	occasionally	they	get	hung	up	for	one	reason	or	another.	If	the	process	is	still	

	 	 6	 	

tied	to	your	terminal,	you	can	attempt	to	kill	it	by	pressing	Control-c.	If	it	is	not	tied	to	your	
terminal,	or	if	that	doesn’t	work,	you’ll	need	to	find	its	PID	using	top	or	ps	and	kill	it	using	
the	kill	command:	
	 kill pid
usually	works,	but	when	it	doesn’t	
	 kill -9 pid
usually	does.	If	that	doesn’t	work	you	need	to	reboot	the	system.	

Searching files
You	can	search	the	contents	of	a	text	file	by	using	the	grep	utility.	To	search	through	
/etc/passwd	for	the	phrase	“bnp”,	run:	
grep bnp /etc/passwd
	
To	search	through	a	directory	of	files	(/etc)	for	files	containing	the	phrase	“bnp”,	use	the	
recursive	option	to	grep:	
grep –r bnp /etc
	
The	will	almost	certainly	result	in	several	errors,	because	we	don’t	have	permission	to	read	
all	the	files	in	/etc.	To	get	rid	of	these	errors,	we	can	pipe	standard	error	to	/dev/null,	
leaving	just	the	useful	output	on	standard	error.	
grep –r bnp /etc 2> /dev/null
	
By	default,	grep	does	a	case	sensitive	search.	To	make	it	case	insensitive,	you	can	add	the	
–i switch.	grep	has	lots	of	switches,	which	you	can	see	by	reading	its	man	page.	

Uploading and Downloading Files
Any	SFTP	or	SCP	client	can	be	used	to	upload	files	to	or	download	files	from	hpcwoods.	
FileZilla	or	WinSCP	are	good	choices.	Because	hpcwoods	shares	home	directories	with	the	
supercomputers,	any	files	uploaded	to	hpcwoods	will	also	appear	on	the	supercomputers.	
	
There	is	also	a	command	line	utility	called	scp	(Secure	Copy)	that	allows	you	to	transfer	
files	to	and	from	hpcwoods.	For	instance,	if	user	bnp	wanted	to	transfer	a	file	called	file.txt	
to	his	home	directory	on	hpcwoods,	he	could	run:	
scp file.txt bnp@hpcwoods.olemiss.edu:~

It	can	also	be	used	in	the	opposite	direction	to	download	files	from	hpcwoods:	
scp bnp@hpcwoods.olemiss.edu:~/file.txt .

hpcwoods,	sequoia,	and	catalpa	all	share	the	same	home	directories,	so	you	upload	a	file	to	
hpcwoods,	it	will	also	be	available	on	sequoia	and	catalpa.	

Finding a file
Find	files	using	a	database	that	is	updated	once	a	day	
locate filename (Not	installed	on	hpcwoods.)

	 	 7	 	

Find	all	files	in	your	home	directory	with	*.txt	extension
find ~ –name “*.txt”	
	
Show	all	files	in	the	current	directory	that	have	been	changed	in	the	past	day
find . -mtime -1

Compressing files
tar –zcvf example.tar.gz directory (Archive	and	compress)	

tar –zxvf example.tar.gz (Decompress	and	unarchive)

Command Line Shortcuts and Tricks
!find (Run	the	find	command	with	the	same	arguments	as	last	time)

mkdir long_dir_name
cd !$ (Reuse	the	last	argument	from	the	previous	command)	

Use	Control-r	to	do	a	reverse,	incremental	search	for	previous	commands	

Other interesting commands
Lookup	information	about	a	user
finger username

Show	disk	usage	in	the	current	directory	
du –h

Download	a	file	from	the	web	
wget url

