
Introduction to the UNIX Command Line
Mississippi Center for Supercomputing Research
Ben Pharr bnpharr@olemiss.edu
	
What is UNIX?
Originally	an	operating	system	developed	by	Bell	Labs	in	1969,	the	term	has	now	come	to	
mean	an	operating	system	that	is	UNIX-like.	Linux	is	currently	the	most	commonly	used	
UNIX,	but	several	others	exist,	such	as	Solaris,	FreeBSD,	Mac	OS	X,	etc.	All	UNIX-like	
operating	systems	offer	a	similar	command-line	environment.	
	
More about Linux	
There	are	hundreds	of	Linux	distributions	put	together	by	different	companies	and	non-
profit	groups.	They	differ	in	various	ways,	but	they	all	use	the	Linux	kernel,	which	was	
developed	Linus	Torvalds,	a	Finnish	college	student,	in	1991.	They	also	include	several	
GNU	software	packages	and	other	open	source	software.	
	
Some	distributions	you	might	have	heard	of	are:	Red	Hat,	Fedora,	Ubuntu,	Mint,	and	SUSE.	
Linux	runs	on	everything	from	supercomputers	to	cell	phones	to	vending	machines.	
	
Connecting to a remote server
Most	UNIX	and	Linux	systems	that	are	operating	as	servers	run	an	SSH	daemon.	Users	with	
valid	accounts	on	that	system	can	then	use	an	SSH	client	to	connect	to	the	server	and	run	
commands	on	the	server	remotely.	There	are	a	few	free	SSH	clients.	We	recommend:	

• PuTTY:	http://www.chiark.greenend.org.uk/~sgtatham/putty/	(Windows)	
• Mac	OS	X	and	most	Linux	distributions	come	with	a	command-line	SSH	client	(ssh)	

pre-installed.	
	
Today	we’ll	be	using	the	PuTTY	to	connect	to	hpcwoods,	MCSR’s	gateway	server.	

1) Start	by	opening	the	PuTTY	application.	
2) In	the	“Host	Name”	field,	enter	“hpcwoods.olemiss.edu”.	
3) Click	“Open”.	
4) Depending	on	whether	or	not	your	computer	has	ever	connected	to	hpcwoods,	you	

may	get	a	dialog	asking	if	you	“want	to	save	the	new	host	key	to	the	local	database?”	
Click	“Yes”.	This	is	so	the	client	can	confirm	the	identity	of	the	server	on	subsequent	
connections.	

5) If	you	are	an	MCSR	user,	you	may	use	your	username	in	the	“User	Name”	field.	
Otherwise,	use	the	temporary	username	given	to	you	by	the	instructor.	

6) Enter	your	password,	or	the	one	given	to	you	by	the	instructor,	in	the	“Password”	
field.	Note	that	nothing	will	appear	as	you	type.	This	is	a	security	feature.	

7) If	successful,	you	should	see	a	command	prompt.	Something	like:	
username@hpcwoods:~>	

	
Mac	and	Linux	users	can	open	a	Terminal	window	and	run:	
ssh username@hpcwoods.olemiss.edu	

	 	 2	
	 	 	 	

The Shell
The	prompt	is	displayed	by	a	program	called	the	shell.	It	allows	the	user	to	run	other	
programs.	
	
Almost	all	UNIX	operating	systems	use	bash	as	the	default	shell.	Other	popular	shells	
include	tcsh	and	zsh.	Today	we	will	be	using	bash.	You	can	confirm	you	are	using	bash	
by	typing:	
 echo $SHELL
For	most	users,	the	output	will	be:	
	 /bin/bash
indicating	the	program	that	is	running	as	their	shell.	
	
Clearing the screen
It	is	often	convenient	to	clear	the	screen	before	you	start	a	new	task.	This	can	be	done	by	
typing:	
 clear
	
Navigating the filesystem
When	you	login	to	a	UNIX	system,	you	start	off	in	your	home	directory.	Type:	
	 pwd
to	print	your	current	directory.	For	most	users,	it	will	print	something	like:	
 /home/username	
	
Note	the	tilde	(~)	in	your	shell	prompt.	This	indicates	that	you	are	in	your	home	directory.	
As	you	move	through	the	filesystem,	this	section	of	your	prompt	will	change	to	indicate	
your	current	directory.	
	
To	find	out	what	files	and	directories	you	have	in	your	home	directory,	type:	
 ls
If	your	account	is	new,	you	may	not	have	any	files	or	directories,	so	let’s	create	a	new	
directory	to	hold	your	files	for	this	workshop:	
 mkdir workshop
Now	when	you	run	
 ls
you	should	see	the	workshop	directory	listed.	
	
Now	we	want	to	move	into	the	newly	created	directory.	Another	way	of	saying	that	is,	we	
want	to	make	the	new	directory	our	current	directory.	To	do	this,	we	type:	
 cd workshop
cd	stands	for	change	directory.	Your	shell	prompt	should	have	changed	to	indicate	that	
workshop	is	now	your	current	directory.	
	

	 	 3	
	 	 	 	

Creating a text file
Now	that	we’ve	created	a	directory	to	hold	our	files	for	this	workshop,	we	can	create	our	
first	file,	using	the	nano	text	editor.	
	 nano new.txt
	
You	can	now	type	as	in	any	normal	text	editor.	Type	a	few	lines,	pressing	the	Enter	or	
Return	key	to	begin	a	new	line.	Once	you’re	done,	type	Control-o	to	save	the	file.	Press	
Enter	to	confirm	the	filename.	Then	type	Control-x	to	exit	nano	and	return	to	the	shell.	
	
nano	is	the	simplest	of	UNIX	text	editors.	Other	options	include	vi	and	emacs.	Their	
learning	curves	are	steeper,	but	they	also	have	more	features.	
	
To	see	your	new	file,	type:	
 ls
You	should	see	new.txt.	To	find	out	more	about	your	file,	type:	
 ls -l
	
This	will	tell	you	the	file’s	permissions,	owner,	group,	size,	and	modification	date	and	time.	
This	is	an	example	of	modifying	a	command’s	behavior	by	using	an	option,	or	switch.	The	ls	
command	has	dozens	of	options	and	many	commands	have	several.	Most	commands	have	a	
manual	page	(often	shortened	to	“man	page”)	that	explains	what	the	command	does	and	
what	options	and	arguments	it	takes.	You	can	view	the	ls	man	page	by	typing:	
 man ls
	
You	can	scroll	a	line	at	a	time	using	the	Enter	key	or	a	page	at	a	time	using	the	space	bar.	
You	can	search	the	man	page	by	typing	“/search_term”	and	pressing	Enter.	For	instance,	to	
search	for	a	way	to	sort	files	by	size,	you	might	type	“/size”	and	press	Enter.	It	will	
immediately	take	you	to	the	first	occurrence	of	the	word	“size.”	Typing	“/”	and	pressing	
Enter	will	take	you	to	the	next	occurrence	of	the	term.	Pressing	“q”	will	exit	back	to	the	
shell.	
	
Viewing a file
The	simplest	way	to	view	a	file	is	to	use	cat:	
 cat new.txt
	
cat	simply	prints	the	entire	file	to	the	screen.	This	is	handy	for	short	files.	
	
For	longer	files,	you	might	use	less:	
 less new.txt
	
You’ll	find	that	less	behaves	exactly	like	man.	This	is	not	a	coincidence;	man	actually	uses	
less	for	displaying	manual	pages.	
	
You	can,	of	course,	use	any	text	editor	for	viewing	files	as	well.	

	 	 4	
	 	 	 	

Tab completion
Often	it’s	not	necessary	to	type	in	the	entire	name	of	a	command	or	filename.	For	instance,	
using	the	example	above,	we	can	type	in:	
 cat n
then	press	the	Tab	key.	Since	there	is	only	one	file	in	this	directory	that	begins	with	an	n,	
bash	can	fill	out	the	rest	of	the	name	for	us.	
	
Command history
You	can	see	commands	that	you	have	run	in	the	past	by	pressing	the	up	arrow	key.	Just	
press	the	Enter	key	to	run	a	command.	You	can	also	see	a	list	of	previously	run	commands	
by	typing:	
 history
	
Copying, renaming, and deleting files
To	make	a	copy	of	your	file	named	copy.txt,	type:	
 cp new.txt copy.txt
	
Use	the	ls	command	to	see	the	new	file.	
	
You	can	rename	a	file	using	the	mv	command:	
 mv copy.txt new2.txt
	
By	default,	ls	shows	all	files	in	the	current	directory.	However,	you	can	specify	one	or	
more	filenames	as	command	line	arguments.	For	example:	
 ls –l new2.txt
	
While	we	have	two	similar	files	sitting	around,	let’s	discuss	wildcards.	Most	UNIX	
commands	can	accept	a	pattern	rather	than	a	specific	filename.	For	instance,	to	see	all	
filenames	that	end	in	“.txt”:	
	 ls *.txt
or	all	filenames	that	begin	with	“new”:	
	 ls new*
There	are	other,	more	advanced	wildcards	that	will	be	covered	in	the	next	workshop.	
	
Finally,	you	can	delete	a	file	by	using	the	rm	command:	
 rm new2.txt
	
Capturing command output
The	w	command	can	be	used	to	see	a	list	of	users	currently	logged	into	the	system:	
 w
	
If	we	wanted	to	save	the	output	of	the	w	command	in	a	file	named	w_output.txt,	we	could	
type:	
 w > w_output.txt
	

	 	 5	
	 	 	 	

We	can	now	view	or	edit	this	output	using	the	tools	discussed	earlier.	This	capability	isn’t	
part	of	the	w	command,	but	rather	the	shell,	meaning	that	we	can	use	this	for	any	command.	
	
“Filtering” command output
The	output	of	a	command	can	also	be	passed	to	another	command	for	further	processing.	
For	instance,	the	history	command	often	returns	several	pages	of	commands.	Wouldn’t	it	
be	nice	if	we	could	view	the	output	of	the	history	command	inside	less.	Of	course,	
bash	allows	us	to	do	this:	
 history | less
	
Here	we	are	“piping”	the	output	of	the	history	command	to	the	input	of	the	less	
command.	Almost	all	UNIX	commands	can	be	used	in	a	similar	fashion.	For	instance,	we	can	
quickly	find	our	entry	in	the	system’s	“password”	file	like	so:	
 cat /etc/passwd | grep bnp
	
Here	we	are	using	cat	to	“print	out”	the	password	file,	and	the	grep	command	to	search	
for	our	entry.	
	
Finally,	let’s	say	we	wanted	to	know	how	many	users	on	the	system	were	using	the	bash	
shell.	We	can	do	it	like	this:	
 cat /etc/passwd | grep /bin/bash | wc –l
	
Here	we	are	searching	for	every	line	in	/etc/passwd	that	contains	/bin/bash	and	then	
counting	those	lines	using	wc –l.	
	
Copying and deleting directories
Before	copying	our	workshop	directory,	we	want	to	move	back	to	our	home	directory.	This	
can	be	done	by	typing:	
 cd
cd	without	an	argument	always	returns	us	to	our	home	directory.	
	
Now,	to	copy	the	workshop	directory	to	a	new	directory	called	ws_copy,	type:	
 cp –r workshop ws_copy
	
To	see	the	contents	of	the	directory,	type:	
 ls ws_copy
	
We	can	delete	this	directory	by	typing:	
 rm –r ws_copy
	
Disconnecting from the remote server
To	disconnect	from	the	remote	server,	you	can	type:	
 exit
or	just	type	Control-d.	

